Three-Mode Entangled State Representation of Continuum Variables and Optical Four-Wave Mixing

Hong-yi Fan¹ and Nian-quan Jiang^{2,3}

We establish a new three-mode entangled state representation $|\beta, \zeta\rangle_{\theta}$ of continuum variables, which make up a complete set. Using optical four-wave mixing and a beam splitter transform we can prepare $|\beta, \zeta\rangle_{\theta}$. Based on $|\beta, \zeta\rangle_{\theta}$ a new number-difference—operational-phase uncertainty relation is established and the corresponding squeezing dynamics is discussed.

KEY WORDS: three-mode entangled state representation; beam splitter transform; four-wave mixing process.

1. INTRODUCTION

It is well known that an optical four-wave mixing process (Scully and Zubairy, 2000; Loudon and Knight, 1987) is a nonlinear one in which two planar counterpropagating intense pump waves ε_1 and ε'_1 interact in a nonlinear medium (characterized by a third-order nonlinear susceptibility $\chi^{(3)}$, the length of medium is *L*) with a probe field ε_2 entering at an arbitrary angle to the pump waves and yield a fourth (output) wave ε_3 , which is the phase conjugate of ε_2 . The generated field is driven only by the complex conjugate of the signal field amplitude, thus leading to phase conjugate. By extending the classical analysis to phenomenological quantum treatment (the fields are specified at the ends of the nonlinear crystal, z = 0 and *L*) one can derive that the signal and its conjugate fields (weaker than pump fields) satisfy the equations (Scully and Zubairy, 2000)

$$\frac{da_2}{dz} = i\kappa a_3^{\dagger}, \qquad \frac{da_3}{dz} = i\kappa a_2^{\dagger}, \tag{1}$$

2275

¹Department of Material Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.

² Department of Physics, Wenzhou Normal College, Wenzhou 325027, China.

³To whom correspondence should be addressed at Wenzhou Normal College; e-mail: jiangnq@mail. ustc.edu.cn.

where κ is a parameter relating to the third-order nonlinear susceptibility $\chi^{(3)}$. Let $a_2(0)$ of the probe field ε_2 and $a_3(L)$ of ε_3 be the initial known fields, then the solution of (1) is (Scully and Zubairy, 2000) (see the appendix).

$$a_{2}(L) = a_{2}(0) \sec \theta + i \frac{\kappa}{|\kappa|} a_{3}^{\dagger}(L) \tan \theta, \quad \theta = |\kappa|L,$$

$$a_{3}(0) = a_{3}(L) \sec \theta + i \frac{\kappa}{|\kappa|} a_{2}^{\dagger}(0) \tan \theta.$$
 (2)

These solutions, more or less, resemble the two-mode squeezing transform, however, its form somehow differs from the well-known Bogolyubov transform (the usual two-mode squeezing transform is $a_2 \rightarrow a_2 \cosh \tau + a_3^{\dagger} \sinh \tau$, $a_3 \rightarrow a_3 \cosh$ $\tau + a_2^{\dagger} \sinh \tau$, which happens in a parametric down-conversion process (Loudon and Knight, 1987)) so we name (2) the four-wave mixing transform. On the other hand, in recent years quantum entanglement and entangled states have been paid much attention in quantum optics. For example, Tara and Agarwal (1994) discussed how the Einstein–Podolsky–Rosen paradox for continuous variables can be tested using the quadrature amplitudes of a radiation field in the pair-coherent state. Correlated pairs of photons are produced by two competing nonlinear processes-four-wave mixing and two-photon absorption. Fan and Klauder (1994) (Fan et al., 2003) constructed in Fock space the bipartite entangled state $|\beta\rangle = \exp[-\frac{1}{2}|\beta|^2 + \beta a_1^{\dagger} + \beta^* a_2^{\dagger} - a_2^{\dagger} a_1^{\dagger}]|00\rangle$ and later it is shown that the two-mode squeezing operator $\exp[\lambda(a_1^{\dagger}a_2^{\dagger} - a_1a_2)]$ just squeezes $|\beta\rangle \rightarrow$ $|\beta/\mu\rangle/\mu$, $\mu = e^{\lambda}$ (Fan and Fan, 1996). It is also shown that the operational-phase operator proposed by Noh et al. (1991) and analyzed deeply by Freyberger et al. (1995) manifestly exhibits its phase behavior in the bipartite entangled state representation (Fan and Min, 1996). All these indicate that establishing suitable entangled state of continuum variables will be of help in many situations. An interesting question thus naturally arises: Can we employ the four-wave mixing mechanism to construct a type of three-mode entangled states? The answer is affirmative. In Section 2 we present such an entangled state and then discuss its generation. In Section 3 we discuss its major properties. In Section 4 we show that the new three-mode entangled state can lead us to construct a new number-differenceoperational-phase uncertainty relation in three-mode case. In Section 5 we discuss the dynamics governing the number-difference-operational-phase squeezing.

2. THREE-MODE ENTANGLED STATE $|\beta, \zeta\rangle_{\theta}$

We construct the following three-mode entangled states

$$|\beta,\zeta\rangle_{\theta} = \cos\theta \exp\left[-\frac{1}{2}\left(|\beta|^{2} + |\zeta|^{2}\right) + \beta a_{1}^{\dagger} + \zeta a_{3}^{\dagger} + a_{2}^{\dagger}(a_{1}^{\dagger} - \beta^{*})\cos\theta - ia_{2}^{\dagger}(a_{3}^{\dagger} - \zeta^{*})\sin\theta\right]|000\rangle.$$
(3)

Three-Mode Entangled

where β , ζ are two complex variables. This type of state is comparatively simpler in form. In order to see how four-wave mixing mechanism can engender it, we introduce an operator *S* that induces the four-wave mixing transform like (2),

$$a_2^{\dagger} \to S a_2^{\dagger} S^{-1} = a_2^{\dagger} \sec \theta - i a_3 \tan \theta, \quad a_3^{\dagger} \to S a_3^{\dagger} S^{-1} = a_3^{\dagger} \sec \theta - i a_2 \tan \theta.$$
(4)

We can derive the concrete form of *S* by a mapping from the classical transform $\alpha_2 \rightarrow \alpha_2 \sec \theta - i\alpha_3^* \tan \theta$, $\alpha_3 \rightarrow -i\alpha_2^* \tan \theta + \alpha_3 \sec \theta$ in the coherent state basis to Hilbert space, i.e.

$$S = \int \frac{d^2 \alpha_3 d^2 \alpha_2}{\pi^2} |\alpha_2 \sec \theta - i\alpha_3^* \tan \theta, \quad i\alpha_2^* \tan \theta + \alpha_3 \sec \theta \rangle \langle \alpha_2, \alpha_3 |, \quad (5)$$

where $\langle \alpha_2, \alpha_3 |$ is the two-mode coherent state (Klauder and Skargerstam, 1985; Glauber, 1963)

$$\langle \alpha_2, \alpha_3 | = \langle 0, 0 | \exp\left[-\frac{1}{2} |\alpha_2|^2 + |\alpha_3|^2 + a_2 \alpha_2^* + a_3 \alpha_3^*\right].$$
 (6)

Using the normal ordering form of vacuum projector

$$|0,0\rangle \langle 0,0| =: \exp[-a_2^{\dagger}a_2 - a_3^{\dagger}a_3] :,$$
 (7)

where the symbol :: denotes normal ordering, and the technique of integration within an ordered product (IWOP) of operators (Fan, 2003; Wunshe, 1999) we perform the integral in (5) and obtain

$$S = \int \frac{d^2 \alpha_3 d^2 \alpha_2}{\pi^2} : \left[-\frac{1}{2} |\alpha_2 \sec \theta - i\alpha_3^* \tan \theta|^2 + (\alpha_2 \sec \theta - i\alpha_3^* \tan \theta) a_2^{\dagger} -\frac{1}{2} |-i\alpha_2^* \tan \theta + \alpha_3 \sec \theta|^2 + (-i\alpha_2^* \tan \theta + \alpha_3 \sec \theta) a_3^{\dagger} \right]$$
(8)
$$-\frac{1}{2} (|\alpha_2|^2 + |\alpha_3|^2) + a_2 \alpha_2^* + \alpha_3^* a_3 - a_2^{\dagger} a_2 - a_3^{\dagger} a_3 \right] :$$
$$= \cos \theta \exp[-ia_3^{\dagger} a_2^{\dagger} \sin \theta] \exp[(a_2^{\dagger} a_2 + a_3^{\dagger} a_3) \ln \cos \theta] \exp[-ia_3 a_2 \sin \theta].$$

Using Baker–Hausdorff formula we confirm that (8) really induces (4).

It has been reported (Loock and Braunstein, 2000; Cochrane and Milburn, 2001) that an ideal beam splitter's operation applied to a momentum squeezed (maximally squeezed in the *P*-quadrature direction) vacuum state (mode a_1^{\dagger}) and a position-squeezed (maximally squeezed in the *X*-quadrature direction) vacuum state (mode a_2^{\dagger}) can yield a two-mode entangled state $\exp[a_1^{\dagger}a_2^{\dagger}]|00\rangle_{12}$. On the basis of this state, we let a_2^{\dagger} -mode, the probe field ε_2 , be coupled with another

mode a_3^{\dagger} in the four-wave mixing equipment then the result can be theoretically expressed by operating *S* on the state $\exp[a_1^{\dagger}a_2^{\dagger}]|00\rangle_{12} \otimes |0\rangle_3$, i.e.,

$$S \exp[a_1^{\dagger} a_2^{\dagger}]|000\rangle = \exp[a_1^{\dagger} (a_2^{\dagger} \sec \theta - ia_3 \tan \theta)]S|000\rangle$$

= $\cos \theta \exp[a_1^{\dagger} (a_2^{\dagger} \sec \theta - ia_3 \tan \theta)] \exp[-a_2^{\dagger} a_3^{\dagger} \sin \theta]|000\rangle$ (9)
= $\cos \theta \exp[a_1^{\dagger} a_2^{\dagger} \cos \theta - ia_3^{\dagger} a_2^{\dagger} \sin \theta]|000\rangle = |\beta = 0, \zeta = 0\rangle_{\theta}.$

By further operating the two-mode displacement operator $D_1(\beta)D_3(\zeta)$ on $|\beta = 0, \zeta = 0\rangle_{\theta}$, where $D_1(\beta) = \exp(\beta a_1^{\dagger} - \beta^* a_1), D_3(\zeta) = \exp(\zeta a_3^{\dagger} - \zeta^* a_3)$ (this displacement can be realized by two local oscillators), we have

$$D_1(\beta) D_3(\zeta) |\beta = 0, \zeta = 0\rangle_{\theta} = |\beta, \zeta\rangle_{\theta}, \qquad (10)$$

which is just (3).

3. PROPERTIES OF $|\beta, \zeta\rangle_{\theta}$

It stands to reason that $|\beta, \zeta\rangle_{\theta}$ is a generalized entangled state, in which a_2^{\dagger} mode entangles both a_3^{\dagger} and a_1^{\dagger} modes. When $\theta = \pi$, $|\beta, \zeta\rangle_{\theta} \rightarrow |\beta\rangle_{12} \otimes |\zeta\rangle_{3}$, where

$$|\beta\rangle_{12} = \exp\left[-\frac{1}{2}\,|\beta|^2 + \beta a_1^{\dagger} + \beta^* a_2^{\dagger} - a_2^{\dagger} a_1^{\dagger}\right]|00\rangle_{12},\tag{11}$$

is the two-mode entangled state in modes 2 and 3, and

$$|\zeta\rangle_3 = \exp\left[-\frac{1}{2}|\zeta|^2 + \zeta a_3^{\dagger}\right]|0\rangle_3.$$
⁽¹²⁾

is a coherent state in mode 3. Thus we see that when one makes a correlation between single-mode coherent states with a two-mode entangled state, one can obtain a non-trivial three-mode entangled state.

From (3) we obtain three independent eigenvector equations,

$$(a_1 - a_2^{\dagger} \cos \theta) |\beta, \zeta\rangle_{\theta} = \beta |\beta, \zeta\rangle_{\theta}, \qquad (13)$$

$$(a_3 - ia_2^{\dagger}\sin\theta) |\beta, \zeta\rangle_{\theta} = \zeta |\beta, \zeta\rangle_{\theta}, \qquad (14)$$

$$(a_2 - a_1^{\dagger}\cos\theta + ia_3^{\dagger}\sin\theta) |\beta, \zeta\rangle_{\theta} = (-\beta^*\cos\theta + i\zeta^*\sin\theta) |\beta, \zeta\rangle_{\theta}, \quad (15)$$

Combining (13) and (14), we have

$$(a_2^{\dagger} - a_1 \cos \theta - i a_3 \sin \theta) |\beta, \zeta\rangle_{\theta} = (-\beta \cos \theta - i \zeta \sin \theta) |\beta, \zeta\rangle_{\theta}.$$
(16)

and

$$(a_3\cos\theta + ia_1\sin\theta)|\beta,\zeta\rangle_{\theta} = (\zeta\cos\theta + i\beta\sin\theta)|\beta,\zeta\rangle_{\theta}.$$
 (17)

Three-Mode Entangled

By introducing $X_3 = \frac{1}{\sqrt{2}}(a_3 + a_3^{\dagger})$, $P_3 = \frac{1}{\sqrt{2i}}(a_3 - a_3^{\dagger})$, (15) and (16) are equivalent to

$$(X_2 - X_1 \cos \theta + P_3 \sin \theta) |\beta, \zeta\rangle_{\theta} = \sqrt{2} (\zeta_2 \sin \theta - \beta_1 \cos \theta) |\beta, \zeta\rangle_{\theta}, \quad (18)$$

$$(P_2 + P_1 \cos \theta + X_3 \sin \theta) |\beta, \zeta\rangle_{\theta} = \sqrt{2} (\beta_2 \cos \theta + \zeta_1 \sin \theta) |\beta, \zeta\rangle_{\theta}.$$
(19)

Note that the three operators $(X_2 - X_1 \cos \theta + P_3 \sin \theta)$, $(P_2 + P_1 \cos \theta + X_3 \sin \theta)$ and $(a_3 \cos \theta + ia_1 \sin \theta)$ constitute a complete commutable operator set. Using the technique of IWOP, we can concisely prove

$$\int \frac{d^2 \beta d^2 \zeta}{\pi^2 \cos^2 \theta} \left| \beta, \zeta \right\rangle_{\theta \theta} \left\langle \beta, \zeta \right| =: \exp\left[a_2^{\dagger} a_2 (\sin^2 \theta + \cos^2 \theta - 1) \right] := 1.$$
(20)

This is the completeness relation of $|\beta, \zeta\rangle_{\theta}$. We also calculate

$$\theta \langle \beta', \zeta' | \beta, \zeta \rangle_{\theta} = \pi \delta[(\beta_2 - \beta'_2) + (\zeta_1 - \zeta'_1) \tan \theta] \delta[(\beta_1 - \beta'_1) - (\zeta_2 - \zeta'_2) \tan \theta] \\ \times \exp\left\{ \beta'^* \beta + \zeta'^* \zeta - \frac{1}{2} (|\beta|^2 + |\zeta|^2 + |\beta'|^2 + |\zeta'|^2) \right\}, \quad (21)$$

which shows that the state $|\beta, \zeta\rangle_{\theta}$ is partly orthogonal.

Thus the ideal $|\beta, \zeta\rangle_{\theta}$ is of importance not only because it can be produced experimentally, but also because it is qualified to make up a new quantum mechanical representation.

4. NEW NUMBER-DIFFERENCE—OPERATIONAL-PHASE UNCERTAINTY RELATION IN THREE-MODE CASE

Based on $|\beta, \zeta\rangle_{\theta}$ we can construct a new number-difference—operationalphase uncertainty relation. In quantum optics theory, number-phase uncertainty relation has been a hot topic for many years. In (Noh *et al.*, 1991, 1993) based on the eight-port homodyne detection scheme Noh, Fougeres and Mandel have introduced the two-mode operational-phase operator $\sqrt{(a_1 - a_2^{\dagger})/(a_1^{\dagger} - a_2)}$ (note $[a_1 - a_2^{\dagger}, a_1^{\dagger} - a_2] = 0$, so they can reside in the same square root), which can be diagonalized in the bipartite entangled state representation (Fan and Min, 1996). If the a_2^{\dagger} -mode undergoes a four-wave mixing transform before it enters into an eight-port homodyne interferometer, then according to (3) the operational-phase operator should be modified as

$$\sqrt{\frac{a_1 - a_2^{\dagger}}{a_1^{\dagger} - a_2}} \rightarrow \widehat{e^{i\Phi}} = \sqrt{\frac{a_1 - a_2^{\dagger} \sec \theta + ia_3 \tan \theta}{a_1^{\dagger} - a_2 \sec \theta - ia_3^{\dagger} \tan \theta}}$$
$$= \sqrt{\frac{a_2^{\dagger} - ia_3 \sin \theta - a_1 \cos \theta}{a_2 + ia_3^{\dagger} \sin \theta - a_1^{\dagger} \cos \theta}}.$$
(22)

Fan and Jiang

 $\widehat{e^{i\Phi}}$ is unitary. Using (15), (16) and (20) we see that $\widehat{e^{i\Phi}}$ is diagonalized in $|\beta, \zeta\rangle_{\theta}$ representation,

$$\widehat{e^{i\Phi}} = \int \frac{d^2\beta d^2\zeta}{\pi^2 \cos^2\theta} \left(\frac{-\beta \cos\theta - i\zeta \sin\theta}{-\beta^* \cos\theta - i\zeta^* \sin\theta} \right)^{1/2} |\beta, \zeta\rangle_{\theta\theta} \langle\beta, \zeta|$$

$$= \int \frac{d^2\beta d^2\zeta}{\pi^2 \cos^2\theta} \exp[i \arg(-\beta \cos\theta - i\zeta \sin\theta)] |\beta, \zeta\rangle_{\theta\theta} \langle\beta, \zeta|.$$
(23)

Let

$$A = a_2 + ia_3^{\dagger}\sin\theta - a_1^{\dagger}\cos\theta, \qquad (24)$$

We can make the polar decomposition

$$A = \widehat{e^{-i\Phi}}\sqrt{A^{\dagger}A}, \qquad A^{\dagger} = \sqrt{A^{\dagger}A}\widehat{e^{i\Phi}}, \tag{25}$$

where

$$A^{\dagger}A = \frac{1}{2} [(X_2 - X_1 \cos \theta + P_3 \sin \theta)^2 + (P_2 + P_1 \cos \theta + X_3 \sin \theta)^2].$$
(26)

After many trials we find that the variable D which is conjugate to the phase angle $\hat{\Phi}$,

$$D = a_1^{\dagger} a_1 - a_2^{\dagger} a_2 + a_3^{\dagger} a_3, \qquad (27)$$

such an operator may describe optical radiation from two energy levels and simultaneously absorbed by another energy level. We can prove

$$[D, A^{\dagger}] = -A^{\dagger}, \qquad [D, A] = A, \qquad [D, A^{\dagger}A] = 0.$$
 (28)

The commutative relation between D and the phase operator is

$$[D, \widehat{e^{i\Phi}}] = -\widehat{e^{i\Phi}}, \quad [\widehat{e^{-i\Phi}}, D] = -\widehat{e^{-i\Phi}}, \quad [\widehat{\Phi}, D] = -i.$$
(29)

It then follows a new generalized number-difference—operational-phase uncertainty relation

$$\Delta D \Delta \cos \hat{\Phi} \frac{1}{2} |\sin \hat{\Phi}|. \tag{30}$$

5. NUMBER-DIFFERENCE—OPERATIONAL-PHASE SQUEEZING DYNAMICS

Based on (29) we can also discuss the number-difference—operational-phase squeezing dynamics in three-mode case. Spirit in similar to (Collet, 1993), we introduce the following Hamiltonian in the interaction picture

$$H_1 = \frac{1}{2}g(D\sin\hat{\Phi} + \sin\hat{\Phi}D), \qquad (31)$$

Three-Mode Entangled

where g is the coupling constant. From the Heisenberg equation we have

$$\frac{dD}{dt} = -i [D, H_I] = \frac{g}{2} \{D, \cos \hat{\Phi}\},$$
(32)

where $\{A, B\}$ denotes AB + BA, and

$$\frac{d}{dt}\sin\hat{\Phi} = -\frac{g}{2}\sin 2\hat{\Phi}, \qquad \frac{d}{dt}\cos\hat{\Phi} = g\sin^2\hat{\Phi}.$$
 (33)

It then follows

$$\frac{d}{dt}\tan\frac{1}{2}\hat{\Phi} = \frac{d}{dt}\left(\frac{1-\cos\hat{\Phi}}{\sin\hat{\Phi}}\right) = -g\tan\frac{1}{2}\hat{\Phi}.$$
(34)

The solution to (34) is

$$\tan\frac{1}{2}\hat{\Phi} = e^{-gt}\tan\frac{1}{2}\hat{\Phi}(0),$$
(35)

the factor e^{-gt} explains the time evolution, so H_I is the Hamiltonian for phase squeezing in three-mode case. On the other hand, from (29) we have

$$[D, \{D, \sin \hat{\Phi}\}] = i\{D, \cos \hat{\Phi}\}, \qquad [D, -\{D, \cos \hat{\Phi}\}] = i\{D, \sin \hat{\Phi}\}.$$
(36)

Noting that

$$\sin \hat{\Phi} D^2 \cos \hat{\Phi} = \frac{1}{2} D^2 \sin 2\hat{\Phi} - i\{\cos \hat{\Phi}, D\} \cos \hat{\Phi}, \qquad (37)$$

$$\cos \hat{\Phi} D^2 \sin \hat{\Phi} = \frac{1}{2} D^2 \sin 2\hat{\Phi} + i\{\sin \hat{\Phi}, D\} \sin \hat{\Phi}, \qquad (38)$$

 $\sin \hat{\Phi} D \sin \hat{\Phi} + \cos \hat{\Phi} D \cos \hat{\Phi} = D, \qquad (39)$

$$[\sin \hat{\Phi} D, \cos \hat{\Phi} D] = [D \sin \hat{\Phi}, D \cos \hat{\Phi}] = -iD, \quad (40)$$

we can derive

$$[\{D, \cos \hat{\Phi}\}, \{D, \sin \hat{\Phi}\}] = 4iD.$$
(41)

From (36-41) we see

$$D, \frac{1}{2}i\{D, \cos{\hat{\Phi}}\}, -\frac{1}{2}i\{D, \sin{\hat{\Phi}}\},$$
 (42)

constitute a close SU(2) Li algebra. So the time evolution of operator D is

$$D(t) = e^{iH_{l}t}D(0)e^{-iH_{l}t} = \frac{1}{2}(e^{gt}J_{+} + e^{-gt}J_{-}).$$
(43)

where

$$J_{+} = \frac{1}{2} \{ D(0), 1 - \cos \hat{\Phi} \}, \ J_{-} = \frac{1}{2} \{ D(0), 1 + \cos \hat{\Phi} \}.$$
(44)

In summary, we have shown how a four-wave mixing transform, together with a beam splitter transform, can engender the three-mode entangled state (3). By combining a beam splitter and a four-wave mixing setup to make up a triter device in which the two processes coexist, we can engender the new three-mode entangled state $|\beta, \zeta\rangle_{\theta}$. Based on $|\beta, \zeta\rangle_{\theta}$ a new number-difference—operationalphase uncertainty relation for three modes is established and the Hamiltonian for number-difference—operational-phase squeezing in three-mode case can be derived.

ACKNOWLEDGMENTS

This work was supported by the President Foundation of Chinese Academy of Science and the National Natural Science Foundation of China, under grant 10175057.

APPENDIX

The solution of (1) can be

$$a_2 = C_1 \sin|\kappa|z + C_2 \cos|\kappa|z, \qquad a_3 = D_1 \sin|\kappa|z + D_2 \cos|\kappa|z.$$
(45)

Substituting (45) into (1) yields

$$|\kappa| (C_1 \cos |\kappa| z - C_2 \sin |\kappa| z) = ika_3^{\dagger},$$

$$|\kappa| (D_1 \cos |\kappa| z - D_2 \sin |\kappa| z) = ika_2^{\dagger},$$
 (46)

where C_i and D_i (i = 1, 2) are integral constants to be determined. Let $a_2(0)$ of the probe field ε_2 and $a_3(L)$ of ε_3 be the initial known fields, then from (45) and (46) one obtains

$$C_{2} = a_{2}(0),$$

$$D_{1} \sin |\kappa|L + D_{2} \cos |\kappa|L = a_{3}(L),$$

$$|\kappa|(C_{1} \cos |\kappa|L - C_{2} \sin |\kappa|L) = ika_{3}^{\dagger}(L),$$

$$|\kappa|D_{1} = -ika_{2}^{\dagger}(0).$$
(47)

After some simple algebra working out the explicit form of C_2 and D_2 and then substituting them into (45) one can reach result (2).

REFERENCES

Cochrane, P. T. and Milburn, G. J. (2001). *Physical Review A* **64**, 062312. Collet, M. J. (1993). *Physical Review Letters* **70**, 3400. Fan, H. (2003). *Journal of Physics B: Quantum and Semiclassical Optics* **5**, R147. Fan, H. and Fan, Y. (1996). Physical Review A 54, 958.

- Fan, H. and Klauder, J. R. (1994). Physical Review A 49, 704; Fan, H. et al. (2003). International Journal of Theoretical Physics 1773.
- Fan, H. and Xiao, M. (1996). Physics Letters A 222, 299.
- Freyberger, M., Heni, M., and Schleich, W. P. (1995). Quantum and Semiclassical Optics 7, 187.
- Glauber, R. J. (1963). Physical Review 131, 2766.
- Klauder, J. R. and Skargerstam, B. S. (1985). Coherent States, World Scientific, Singapore.
- Loock, P. V. and Braunstein, S. L. (2000). Physical Review Letters 84, 3482.
- Loudon, R. and Knight, P. L. (1987). Journal of Modern Optics 34, 709.
- Noh, J. W., Fougeres, A., and Mandel, L. (1991). *Physical Review Letters* 67, 1426; Noh, J. W., Fougeres, A., and Mandel, L. (1993). *Physical Review Letters* 71, 2579.
- Scully, M. O. and Zubairy, M. S. (2000). *Quantum Optics*, Cambridge University Press, pp. 471–475 and the references therein (for a description of four-wave mixing).
- Tara, K. and Agarwal, G. S. (1994). Physical Review A 50, 2870-2875.
- Wunshe, A. (1999). Journal of Physics B: Quantum and Semiclassical Optics 1, R11.